

### ENERGY INSTITUTE

#### **COLORADO STATE UNIVERSITY**

## C3 Colorado Coordinated Campaign

Daniel Zimmerle, Kristine Bennett, Stuart Riddick, Tim Vaughn

# The CSU 'METEC' Group



# What We Do

### **1. METEC Test & Experimental Facility**

- Test leak detection solutions ... lots of them
- Test/develop common methods
- Safety-focused experiments on underground gas leaks

### 2. Make field measurements

Measured across most sectors of NG industry

### 3. Develop emissions simulation software

- Methane Emissions Estimation Tool (MEET) emissions simulator
- athway to Fugitive Emissions Abatement Simulation Tool (FEAST)
  - LDAR simulator



### The **MeTeC**<sub>H4</sub> Facility







Methane Emissions Technology Evaluation Center

**Major Facilities** 





## Note: More than one project ...

- Colorado Coordinated Campaign (topic of this conversation)
- ADED field trials
  - DOE-funded trial for leak detection solutions in DJ, Permian, possibly Marcellus basins.
- RPLUME/UPSIDE Pipeline projects
  - Safety-focused pipeline work for leak detection
  - Trials of pipeline leak survey methods



# **C3: Colorado Coordinated Campaign**



# What is a 'Coordinated Campaign?'

- In short ... coordinated sampling by
  - Top-down methods (aircraft, satellites, regional towers)
  - Bottom-up methods (facility or component)
- Targets a region typically a production basin
- Measurements by multiple teams synchronized as much as possible

### TD & BU measurements disagree on emission rates.

- Missing / undercounting large emitters in BU estimates
- TD methods sample large areas over short periods
- Causality is not generally available for TD methods

**Top Down** More comprehensive

These disagree by ≈1.5x ... and have for years

Bottom Up Easier to update



# Why Interest in Coordinated Campaigns?

- Coordinated campaigns are the 'research preview' to 'tiered observation systems'
  - Regular observation ... at regional level ... at several different scales
  - Coordinated action ... i.e. dispatch ... from detections
- Examples:
  - Satellites  $\rightarrow$  large emitter 'count'  $\rightarrow$  basin emissions updates
  - Aircraft regional flights  $\rightarrow$  large emitter ID  $\rightarrow$  OGI dispatch  $\rightarrow$  repair
- Key Points:
  - Tiered observation is coming ... and 'here to stay'
  - Best to engage, understand and practice than to avoid ... for all stakeholders
  - Tiered methods are not 100% settled yet ... now is the time to learn & tune



### Study Region

#### COGCC data from 1<sup>st</sup> 10 months of 2020

Producing or shut-in.

Producers with >100 wells in Weld & nearby counties



# **Objectives of study**

- Develop better *model* of air emissions from the DJ basin O&G operations
  - Understand frequency and size of large emitters
  - Understand how well current emissions data reflect emissions from the basin.
  - Measure methane and sample VOCs
- Create model CDPHE, industry & others can use to
  - Understand emissions & mitigation opportunities
  - Compare to update sampling campaigns
- Note:
  - Currently does not include regional 'total basin emissions' comparisons
  - Investigating possibilities of comparing to regional satellite estimates
  - CDPHE assembling non-O&G emissions data





# **Example of Tiered Observation in Practice**



## **Campaign Timing & General Plan**



# **Schedule Overview**



- Main Aircraft Windows
  - July 8-21
  - September 17-30
- Ground teams may be active before/after



**Operator Involvement** 

Study Team Only

# **Measurement Methods**

- Aircraft:
  - Imaging spectrometer (U. Arizona)
  - Methane/ethane concentration (U. Colorado, September campaign only)
- Ground
  - Tracer flux (CSU, U. Wyoming)
  - Area concentration mapping (CSU, under consideration)
  - Flux-plane using drones (Scientific Aviation)
  - VOC canisters (CSU)



# **Planning Details: Operators**



#### Technical Working Group

- Study team + operators
- Develop uniform processes
- Review preliminary results
- Educate study team on operational processes
- ≈biweekly, dropping down after field measurement

#### Campaign Planning

- Study team + operators
- Who goes where & when
- Plan activity data collection
- Site access & non-disclosure agreements
- Is a 'governance agreement' required?

#### Field Campaigns

- Study team + operators
- Report dynamic activity
- Site escorts for measurements
- On-the-fly coordination, if needed



# **Planning Details: Teams**



#### Model Development

- Study team (some operator)
- Finalize model features
- Populate static activity & emissions data
- Validate models with operators
- Set up model to run by field campaign

#### Data QA/QC

- Study team
- Consolidate & review data
- Prepare preliminary presentations

#### Model Adjustment

- Study
- Two-way feedback data into model and model into field plan
- Test tiered observation experiment
- Develop guidance for model maintenance



## **Measurement Methods**



### **Aerial Spectrometer:**

#### **Representative CH<sub>4</sub> point sources in the Permian basin**

CH<sub>4</sub> plumes detected across oil/gas sectors



Example  $CH_4$  plumes detected by AVIRIS-NG and GAO imaging spectrometers from oil/gas infrastructure, including emissions from (A) a tank battery , (B) gathering pipeline, (C) a gas processing plant\*, (D) a production site, and (E) a compressor station.

Detection threshold 5-10 kg CH<sub>4</sub>/h

\*2 sources at same facility: 1 flaring and 1 TBD Images courtesy of Riley Duren, U. Arizona



Cusworth *et al* in prep

# Note on 'Fast Ground Screens'

- With site access ...
  - Ground team drives onto site & safely around site
  - If no plume detected, site is classified as 'no emissions detected'
- Advantages: Fast identification of zero-to-low emitting sites
  - Increases site count
  - Provides more accurate representation of 'nontail' emissions
  - Spot checks more sites with aircraft (non) detections



Image from Shane Murphy, U. Wyoming From Fayetteville Campaign



### **Tracer Measurement: In Theory**

$$\frac{\Delta CH_4}{\Delta tracer} = \frac{Flow_{CH_4}}{Flow_{tracer}}$$
(1)

By measuring the concentration enhancements of methane and the tracer gas(es) above background  $(\Delta CH_4 \text{ and } \Delta tracer)$ , and knowing the flowrate of the tracer gas being released (*Flow*<sub>tracer</sub>), the flow of methane from the site (*Flow*<sub>CH<sub>4</sub></sub>) can be determined readily.



Figure 1: Dual tracer flux measurement setup from Roscioli et al.[3]. Tracer gases ( $N_2O$  and  $C_2H_2$ ) are released on-site at known flow rates near suspected emission sources ( $CH_4$ ). Mobile measurements of atmospheric enhancements of both the emission source and tracer gases are made downwind. The mass emission rate of the source can be deduced from the measured downwind enhancements and the known mass emission rates of the tracer gases.



## Tracer Flux (Downwind, With Site Access)



**Requires site access** 

Well developed & recognized method Does not require dispersion assumptions

±20-30% Precision



### OTM33a EPA "Other Test Method 33a"





Wind Direction

Wind Speed & Direction









ENERGY INSTITUTE COLORADO STATE UNIVERSITY

## **SciAv's Drone Platform**

Aeris Pico Mid-IR Methane/Ethane Instrument Gas canister sampling



# **Drone Flux-Plane Method**



#### Quantifying emissions sources from the air

Concentration measurement + Accurate on-board wind speed and direction

- On-board wind system developed at Sci Av (Conley et al., 2014)
- Emissions calculation is based on the principal of mass conservation (Conley et al., 2017)

Emissions = E<sub>Out</sub> – E<sub>In</sub>

 $E_x = \sum < wind vector > \bullet < concentration >$ 

- Notes:
  - No major competing upwind sources
  - Drone uncertainty <u>+</u>10 50% of emission
    - Stronger the better
    - Difficulty measuring flares
  - Need to be around 30 m downwind of the emissive component. Max 50 m.
  - Can measure up to 10 sites per day

Site quantification:



Component-level quantification:



Manned flight example:



ENERGY INSTITUTE

# **Canister Samples for VOCs**

- Evacuated canisters will be deployed with field measurement teams
  - Fill canisters when making another measurement
  - Return canisters to CSU atmospheric sciences for speciation
- VOCs emission rate estimated by comparing concentrations X measured methane flux





### 5-Channel GC GC-FID-FID-FID-ECD-MS

List of Volatile Organic Compounds and statistics of calibration and system LOD



|                        | Calibration Curve |            | Slope of          | Standard     |
|------------------------|-------------------|------------|-------------------|--------------|
| VOC                    | Correalation (r)  | LOD (ppbv) | Calibration Curve | Range (ppbv) |
| ethane                 | 0.999             | 0.105      | 137               | 0.4-3362     |
| propane                | 0.999             | 0.02       | 1294              | 0.4-3203     |
| i-butane               | 0.999             | 0.008      | 1682              | 0.4-3171     |
| n-butane               | 0.999             | 0.01       | 1691              | 0.4-3140     |
| i-pentane              | 0.999             | 0.009      | 2110              | 0.4-3171     |
| n-pentane              | 0.998             | 0.007      | 2039              | 0.4-3108     |
| 2,4-dimethylpentane    | 0.992             | 0.004      | 4049              | 0.4-3330     |
| 2,3-dimethylpentane    | 0.998             | 0.013      | 1049              | 0.4-3362     |
| 2,2,4-trimethylpentane | 0.998             | 0.018      | 1196              | 0.4-3298     |
| 2,3,4-trimethylpentane | 0.999             | 0.009      | 1174              | 0.4-3299     |
| n-hexane               | 0.999             | 0.012      | 2467              | 0.4-3267     |
| 2-methylhexane         | 0.999             | 0.01       | 1079              | 0.4-3299     |
| 3-methylhexane         | 0.999             | 0.014      | 1064              | 0.4-3299     |
| n-heptane              | 0.995             | 0.009      | 3164              | 0.4-3299     |
| 2-methylheptane        | 0.999             | 0.022      | 1165              | 0.4-3299     |
| 3-methylheptane        | 0.999             | 0.016      | 1177              | 0.4-3267     |
| n-octane               | 0.999             | 0.016      | 1115              | 0.4-3299     |
| n-nonane               | 0.999             | 0.01       | 1165              | 0.4-3235     |
| n-decane               | 0.999             | 0.011      | 1131              | 0.4-3299     |
| cyclopentane           | 0.999             | 0.009      | 2097              | 0.4-3171     |
| cyclohexane            | 0.999             | 0.015      | 895               | 0.4-3330     |
| methylcyclohexane      | 0.999             | 0.019      | 1058              | 0.4-3299     |
| ethene                 | 0.999             | 0.053      | 945               | 0.4-3362     |
| propene                | 0.999             | 0.009      | 1179              | 0.4-3203     |
| t-2-butene             | 0.999             | 0.018      | 1662              | 0.4-3108     |
| 1-butene               | 0.998             | 0.013      | 1651              | 0.4-3104     |
| c-2-butene             | 0.999             | 0.022      | 1756              | 0.4-3362     |
| isoprene               | 0.998             | 0.012      | 2202              | 0.4-3171     |
| t-2-pentene            | 0.996             | 0.014      | 1809              | 0.4-3203     |
| 1-pentene              | 0.998             | 0.023      | 1909              | 0.4-3076     |
| cis-2-pentene          | 0.998             | 0.012      | 1917              | 0.4-3330     |
| acetylene              | 0.999             | 0.013      | 1186              | 0.4-3362     |
| benzene                | 0.999             | 0.01       | 903               | 0.4-3266     |
| 135-trimethylbenzene   | 0.999             | 0.012      | 1091              | 0.4-3235     |
| 1.2.3-trimethylbenzene | 0.996             | 0.012      | 1074              | 0.4-3140     |
| 1.2.4-trimethylbenzene | 0.997             | 0.0124     | 1077              | 0.4-3171     |
| ethylhenzene           | 0.999             | 0.019      | 1066              | 0.4-3266     |
| 13-diethylhenzene      | 0.998             | 0.027      | 1136              | 0.4-3140     |
| 14-diethylbenzene      | 0.998             | 0.013      | 1133              | 0.4-3108     |
| isopropylhenzene       | 0.990             | 0.010      | 1171              | 0.4-3140     |
| n-propylbenzene        | 0.999             | 0.011      | 1157              | 0.4-3108     |
| toluene                | 0.998             | 0.012      | 1028              | 0.4-3266     |
| 2-ethyltoluene         | 0.999             | 0.017      | 1128              | 0.4-3140     |
| 2 ethyltoluene         | 0.999             | 0.025      | 1094              | 0.4-3140     |
| 4 othyltolugas         | 0.355             | 0.014      | 1103              | 0.4-3235     |
| strana                 | 0.996             | 0.015      | 1000              | 0.4-31/1     |
| styrene<br>mun valanas | 0.996             | 0.014      | 1008              | 0.4-3298     |
| m-p-xylenes            | 0.995             | 0.014      | 1/54              | 0.8-6596     |
| o-xyrene               | 0.999             | 0.006      | 1081              | 0.4-3203     |



## **Ground based 'emission landscape'**



- Drive in East/West transects @ 30 mph
- Identify concentration enhancements along the road
- Make a guess at the type and location of the source from:
  - Camera images
  - wind direction
  - [CH4], [C2H6], [N2O] and  $\delta 13C$
- Estimate the emission using a Gaussian approach.
- Compare location/size of emissions with those detected by the aircraft.



## **Next Steps**



## **Next Steps**

- In/Out decisions by each operator  $\rightarrow$  notify CSU (April 30)
- Set regular meetings for technical working group (start w/o April 26?)
- Start agreements
  - Preliminary discussion with one company → suggested a simplified governance agreement. Propose:
    - Work up agreement with that company (April 16)
    - Circulate to all others
  - Start NDA with each company as 'In' decisions received
  - Start site access as soon as TWG identifies ground team ← → company alignment
    ... or ...
  - Site access with CSU and U Wyoming & SciAv covered as subcontractors of CSU?



## **Thank You**

#### Contact

Daniel Zimmerle, Director, Methane Emissions Program Dan.Zimmerle@colostate.edu | 970 581 9945 5W-3

- @CSUenergy
- www.facebook.com/csuenergyinstutute





### ENERGY INSTITUTE

COLENRACIO SPATE DNIMERSDY