Research Results

Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol

02/10/15 – Environmental Science and Technology

Equipment- and site-level methane emissions from 45 compressor stations in the transmission and storage (T&S) sector of the US natural gas system were measured, including 25 sites required to report under the EPA greenhouse gas reporting program (GHGRP). Direct measurements of fugitive and vented sources were combined with AP-42-based exhaust emission factors (for operating reciprocating engines and turbines) to produce a study on-site estimate. Site-level methane emissions were also concurrently measured with downwind tracer flux techniques. At most sites, these two independent estimates agreed with each other, within experimental uncertainty.

Site-level methane emissions varied from 2 to 880 SCFM. Compressor vents, leaky isolation valves, reciprocating engine exhaust, and equipment leaks were major sources, while substantial emissions were observed at both operating and standby compressor stations. The site-level methane emission rates were highly skewed; the highest emitting 10% of sites (including two superemitters) contributed 50% of the aggregate methane emissions, while the lowest emitting 50% of sites contributed less than 10% of the aggregate emissions.

Excluding the two superemitters, study-average methane emissions from compressor housings and noncompressor sources are comparable to or lower than the corresponding effective emission factors used in the EPA greenhouse gas inventory. If the two superemitters are included in the analysis, then the average emission factors based on this study could exceed the EPA greenhouse gas inventory emission factors, which highlights the potentially important contribution of superemitters to national emissions. However, quantification of the superemitters’ influence requires knowledge of their magnitude and frequency across the entire T&S sector.

Only 38% of the methane emissions measured by the comprehensive onsite measurements were reportable under the new EPA GHGRP because of a combination of inaccurate emission factors for leakers and exhaust methane, and various exclusions. The bias is even larger if one accounts for the superemitters, which were not captured by the onsite measurements. The magnitude of the bias varied from site to site by site type and operating state. Therefore, while the GHGRP is a valuable new source of emissions information, care must be taken when incorporating these data into emission inventories.

The value of the GHGRP can be increased by requiring more direct measurements of emissions (as opposed to using counts and emission factors), eliminating exclusions such as rod-packing vents on pressurized reciprocating compressors in standby mode under Subpart-W, and using more appropriate emission factors for exhaust methane from reciprocating engines under Subpart-C.

Download the data at the Methane Transmission and Storage main page.